M2

1

1. Pendahuluan [back]
 

Dalam era modern yang kian berkembang, teknologi terus memberikan kontribusi besar dalam meningkatkan kenyamanan dan efisiensi kehidupan sehari-hari. Salah satu inovasi yang menarik perhatian adalah penggunaan aplikasi gorden otomatis. Gorden, sebagai elemen penting dalam desain interior, tidak hanya berfungsi sebagai penutup jendela, tetapi juga dapat memberikan dampak signifikan terhadap pengaturan cahaya, privasi, dan efisiensi energi di dalam ruangan.

Dengan kemajuan teknologi, gorden otomatis hadir sebagai solusi cerdas untuk memenuhi kebutuhan modern akan kenyamanan dan fungsionalitas. Aplikasi gorden otomatis menggabungkan kecerdasan buatan dengan sistem mekanis yang canggih, memungkinkan penggunanya untuk mengontrol gorden mereka secara otomatis melalui perangkat pintar seperti smartphone atau perintah suara.

Diperlukannya aplikasi gorden otomatis tidak hanya terletak pada aspek kenyamanan, tetapi juga pada potensi penghematan energi. Dengan kemampuan untuk merespons perubahan cahaya matahari dan kebutuhan privasi secara otomatis, aplikasi gorden otomatis dapat membantu mengoptimalkan pencahayaan alami di dalam ruangan dan mengurangi penggunaan energi untuk penerangan buatan. Hal ini sejalan dengan upaya global untuk mengadopsi teknologi yang ramah lingkungan dan berkontribusi pada keberlanjutan.

Selain itu, aplikasi gorden otomatis juga membawa manfaat bagi individu dengan mobilitas terbatas atau kesulitan mengakses gorden secara manual. Dengan kemampuan kontrol jarak jauh, aplikasi ini memberikan inklusivitas dan aksesibilitas yang lebih baik bagi semua penghuni rumah.


2. Tujuan [back]
  1. Menyelesaikan tugas mengenai ADC- Sensor LDR dengan LCD dari Bapak Dr. Ir. Darwison, ST, MT
  2. Mengetahui dan memahami penggunaan ADC- Sensor LDR dengan LCD
  3. Mampu membuat dan menjalankan  rangkaian ADC- Sensor LDR dengan LCD

3. Alat dan Bahan  [back]

 A. Alat
            a). Instrument

Multimeter

            b). Probes
Logic Probe

            c). Generators

Power Supply

        B. Bahan
    
 Resistor

            a). Komponen Input
Dip Switch

Gambar Dip Switch





Gambar Rangkaian interpretasi Dip Switch

    

DIP switch adalah singkatan dari "Dual In-line Package switch." Ini adalah komponen elektronik yang digunakan untuk mengatur konfigurasi atau pengaturan pada perangkat elektronik, seperti papan sirkuit cetak (PCB) atau perangkat lainnya. DIP switch biasanya digunakan untuk mengatur parameter tertentu dalam perangkat elektronik, seperti alamat memori, pengaturan mode operasi, atau pilihan lain yang dapat dikonfigurasi.

Berikut ini adalah beberapa informasi tambahan tentang DIP switch:

Bentuk Fisik: DIP switch biasanya terlihat seperti baris kecil sakelar kecil yang tertanam dalam paket berbentuk DIP, dengan dua baris pin yang bisa dimasukkan ke dalam lubang-lubang di PCB atau papan sirkuit cetak.

Konfigurasi: DIP switch terdiri dari sejumlah sakelar kecil yang dapat dinyalakan atau dimatikan secara individual. Setiap sakelar mewakili satu bit informasi, sehingga konfigurasi DIP switch dapat mencakup berbagai pengaturan bit yang berbeda, seperti 8-bit, 4-bit, atau lainnya, tergantung pada jumlah sakelar dalam komponen tersebut.

Penggunaan Umum: DIP switch digunakan dalam berbagai aplikasi, termasuk di dalam perangkat keras komputer, perangkat elektronik konsumen, peralatan industri, dan banyak lagi. Misalnya, di komputer lama, DIP switch dapat digunakan untuk mengatur alamat I/O, IRQ (Request Interrupt), atau konfigurasi lainnya. Dalam perangkat konsumen modern, penggunaan DIP switch mungkin tidak seumum dulu karena banyak perangkat sekarang menggunakan metode konfigurasi perangkat lunak.

Keuntungan: Keuntungan penggunaan DIP switch adalah kemudahan pengaturan dan ketahanan terhadap perubahan konfigurasi yang tidak disengaja. Pengguna dapat dengan mudah mengatur switch sesuai dengan kebutuhan tanpa perlu pengetahuan khusus atau perangkat lunak khusus. Selain itu, konfigurasi DIP switch tidak hilang atau berubah ketika perangkat dimatikan atau listrik terputus.


            b). Komponen Output


LCD

Liquid Crystal Display (LCD) adalah sebuah peralatan elektronik yang berfungsi untukmenampilkan output sebuah sistem dengan cara membentuk suatu citra atau gambaran pada sebuah layar. Secara garis besar komponen penyusun LCD terdiri dari kristal cair (liquid crystal) yang diapit oleh 2 buah elektroda transparan dan 2 buah filter polarisasi (polarizing filter). Struktur LCD dapat dilihat pada gambar berikut.
Gambar 14. Struktur LCD

Keterangan:

1. Film dengan polarizing filter vertical untuk memolarisasi cahaya yang masuk.

2. Glass substrate yang berisi kolom-kolom elektroda Indium tin oxide (ITO).

3. Twisted nematic liquid crystal (kristal cair dengan susunan terpilin).

4. Glass substrate yang berisi baris-baris elektroda Indium tin oxide (ITO).

5. Film dengan polarizing filter horizontal untuk memolarisasi cahaya yang masuk.

6. Reflektor cahaya untuk memantulkan cahaya yang masuk LCD kembali ke mata pengamat.

Sebuah citra dibentuk dengan mengombinasikan kondisi nyala dan mati dari pixel-pixel yang menyusun layar sebuah LCD. Pada umumnya LCD yang dijual di pasaran sudah memiliki integrated circuit tersendiri sehingga para pemakai dapat mengontrol tampilan LCD dengan mudah dengan menggunakan mikrokontroler untuk mengirimkan data melalui pin-pin input yang sudah tersedia.
Module circuit dari LCD dan kaki-kakinya dapat dilihat melalui gambar berikut.

Gambar. TEXT LCD Module Circuit
 
  
Gambar. Kaki-kaki yang Terdapat pada LCD


c). Komponen Lainnya

    
             
Pir Sensor

Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar.

Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor).

 
GRAFIK RESPON TOUCH SENSOR

              -Sensor Sound



 

- Sensor LDR

LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini.


 

Konfigurasi pin:



Pin 1 : Electrical contact

Pin 2 : Electrical contact

Grafik Respon:



Spesifikasi:



Data Sheet LDR:

 




            
                -Mikrokontroler


Modul Arduino



4. Dasar Teori [back]
A. General Input Output 
Input adalah semua data dan perintah yang dimasukkan ke dalam memori untuk diproses lebih lanjut oleh mikroprosesor. Sebuah perangkat input adalah komponen piranti keras yang memungkinkan user atau pengguna memasukkan data ke dalam mikroprosesor. Output adalah data hasil yang telah diproses. Perangkat output adalah semua komponen piranti keras yang menyampaikan informasi kepada orang-orang yang menggunakannya. Pada Arduino, pin input/output terdiri dari digital dan analog yang jumlah pin-nya tergantung jenis Arduino yang digunakan. Input digital digunakan untuk mendeteksi perubahan logika biner pada pin tertentu. Adanya input digital memungkinkan mikrokontroler untuk dapat menerjemahkan 0V menjadi logika LOW dan 5V menjadi logika HIGH. Membaca sinyal digital pada Arduino dapat menggunakan sintaks digitalRead(pin); Output digital terdiri dari dua buah logika, yaitu kondisi logika HIGH dan kondisi logika LOW. Untuk menghasilkan output kita dapat menggunakan sintaks digitalWrite(pin,nilai); yang sebelumnya pin sudah diset ke mode OUTPUT, lalu parameter kedua adalah set nilai HIGH atau LOW. Apabila pin diset dengan nilai HIGH, maka voltase pin tersebut akan diset ke 5V atau 3.3V dan bila pin diset ke LOW, maka
B. Resistor
Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :

Tabel Kode Warna Resistor
Perhitungan untuk Resistor dengan 4 Gelang warna :


Cara menghitung nilai resistor 4 gelang

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
Perhitungan untuk Resistor dengan 5 Gelang warna :

Cara Menghitung Nilai Resistor 5 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

 

Contoh-contoh perhitungan lainnya :

Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi

Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm

C. Komponen Input
-Dip Switch

Gambar Dip Switch





Gambar Rangkaian interpretasi Dip Switch

    

DIP switch adalah singkatan dari "Dual In-line Package switch." Ini adalah komponen elektronik yang digunakan untuk mengatur konfigurasi atau pengaturan pada perangkat elektronik, seperti papan sirkuit cetak (PCB) atau perangkat lainnya. DIP switch biasanya digunakan untuk mengatur parameter tertentu dalam perangkat elektronik, seperti alamat memori, pengaturan mode operasi, atau pilihan lain yang dapat dikonfigurasi.

Berikut ini adalah beberapa informasi tambahan tentang DIP switch:

Bentuk Fisik: DIP switch biasanya terlihat seperti baris kecil sakelar kecil yang tertanam dalam paket berbentuk DIP, dengan dua baris pin yang bisa dimasukkan ke dalam lubang-lubang di PCB atau papan sirkuit cetak.

Konfigurasi: DIP switch terdiri dari sejumlah sakelar kecil yang dapat dinyalakan atau dimatikan secara individual. Setiap sakelar mewakili satu bit informasi, sehingga konfigurasi DIP switch dapat mencakup berbagai pengaturan bit yang berbeda, seperti 8-bit, 4-bit, atau lainnya, tergantung pada jumlah sakelar dalam komponen tersebut.

Penggunaan Umum: DIP switch digunakan dalam berbagai aplikasi, termasuk di dalam perangkat keras komputer, perangkat elektronik konsumen, peralatan industri, dan banyak lagi. Misalnya, di komputer lama, DIP switch dapat digunakan untuk mengatur alamat I/O, IRQ (Request Interrupt), atau konfigurasi lainnya. Dalam perangkat konsumen modern, penggunaan DIP switch mungkin tidak seumum dulu karena banyak perangkat sekarang menggunakan metode konfigurasi perangkat lunak.

Keuntungan: Keuntungan penggunaan DIP switch adalah kemudahan pengaturan dan ketahanan terhadap perubahan konfigurasi yang tidak disengaja. Pengguna dapat dengan mudah mengatur switch sesuai dengan kebutuhan tanpa perlu pengetahuan khusus atau perangkat lunak khusus. Selain itu, konfigurasi DIP switch tidak hilang atau berubah ketika perangkat dimatikan atau listrik terputus.

    
D. Komponen Output

-   LCD

Liquid Crystal Display (LCD) adalah sebuah peralatan elektronik yang berfungsi untukmenampilkan output sebuah sistem dengan cara membentuk suatu citra atau gambaran pada sebuah layar. Secara garis besar komponen penyusun LCD terdiri dari kristal cair (liquid crystal) yang diapit oleh 2 buah elektroda transparan dan 2 buah filter polarisasi (polarizing filter). Struktur LCD dapat dilihat pada gambar berikut.
Gambar 14. Struktur LCD

Keterangan:

1. Film dengan polarizing filter vertical untuk memolarisasi cahaya yang masuk.

2. Glass substrate yang berisi kolom-kolom elektroda Indium tin oxide (ITO).

3. Twisted nematic liquid crystal (kristal cair dengan susunan terpilin).

4. Glass substrate yang berisi baris-baris elektroda Indium tin oxide (ITO).

5. Film dengan polarizing filter horizontal untuk memolarisasi cahaya yang masuk.

6. Reflektor cahaya untuk memantulkan cahaya yang masuk LCD kembali ke mata pengamat.

Sebuah citra dibentuk dengan mengombinasikan kondisi nyala dan mati dari pixel-pixel yang menyusun layar sebuah LCD. Pada umumnya LCD yang dijual di pasaran sudah memiliki integrated circuit tersendiri sehingga para pemakai dapat mengontrol tampilan LCD dengan mudah dengan menggunakan mikrokontroler untuk mengirimkan data melalui pin-pin input yang sudah tersedia.
Module circuit dari LCD dan kaki-kakinya dapat dilihat melalui gambar berikut.

Gambar 15. TEXT LCD Module Circuit
 
  
Gambar 16. Kaki-kaki yang Terdapat pada LCD



D. Komponen Lainnya

- Arduino

Arduino adalah kit elektronik atau papan rangkaian&nb sp;elektronik open source yang di dalamnya terdapat komponen utama yaitu sebuah chip mikrokontroler dengan jenis AVR dari perusahaan Atmel. Arduino yang kita gunakan dalam praktikum ini adalah Arduino Uno yang menggunakan chip AVR ATmega 328P. Dalam mempr ogram Arduino, kita bisa menggunakan komunikasi serial agar Arduino dapat berhubungan dengan komputer ataupun perangkat lain.

Adapun spesifikasi dari Arduino Uno ini adalah sebagai berikut :

 

Arduino Uno



Bagian-bagian arduino uno:

-Power USB

Digunakan untuk menghubungkan Papan Arduino dengan komputer lewat koneksi USB.

-Power jack

Supply atau sumber listrik untuk Arduino dengan tipe Jack. Input DC 5 -  12 V.

-Crystal Oscillator

Kristal ini digunakan sebagai layaknya detak jantung&n bsp;pada Arduino. Jumlah cetak menunjukkan             16000 atau 16000 kHz, atau 16 MHz.

-Reset

Digunakan untuk mengulang program Arduino dari awal atau Reset.

-Digital Pins I / O

Papan Arduino UNO memiliki 14 Digital Pin. Berfungsi untuk memberikan nilai logika ( 0 atau 1 ). Pin berlabel " ~ " adalah pin-pin PWM ( Pulse Width Modulation ) yang dapat digunakan untuk menghasilkan PWM.

-Analog Pins

Papan Arduino UNO memiliki 6 pin analog A0 sampai A5. Digunakan untuk membaca sinyal atau sensor analog seperti sensor jarak, suhu dsb, dan mengubahnya menjadi nilai digital.

- LED Power Indicator

Lampu ini akan menyala dan menandakan Papan Arduino mendapatkan supply listrik&nbs p;dengan baik.

Bagian - bagian pendukung:

-RAM

RAM (Random Access Memory) adalah tempat penyimpanan sementara pada komputer yang isinya dapat diakses dalam waktu yang tetap, tidak memperdulikan letak data tersebut dalam memori atau acak. Secara umum ada 2 jenis RAM yaitu SRAM (Static Random Acces Memory) dan DRAM (Dynamic Random Acces Memory).

-ROM

ROM (Read-only Memory) adalah perangkat keras pada computer yang dapat menyimpan data secara permanen tanpa harus memperhatikan adanya sumber listrik. ROM terdiri dari Mask ROM, PROM, EPROM, EEPROM.

Block Diagram Mikrokontroler ATMega 328P pada Arduino UNO

Adapun block diagram mikrokontroler ATMega 328P dapat dilihat pada gambar berikut:



Block diagram dapat digunakan untuk memudahkan / memahami bagaimana kinerja dari mikrokontroler ATMega 328P.

Pin-pin ATMega 328P:

            Rangkaian Mikrokontroler ATMega 328P pada Arduino UNO


Sensor LDR


LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenainya. LDR juga dapat digunakan sebagai sensor cahaya. Nilai resistansi dari LDR bergantung pada intensitas cahaya. Semakin tinggi intensitas cahaya (siang hari) yang mengenainya, maka semakin kecil nilai resistansinya. Sebaliknya semakin rendah

intensitas cahaya (malam hari) yang mengenainya, maka semakin besar nilai resistansinya.

Secara umum, sensor LDR memiliki nilai hambatan 200 Kilo Ohm saat intensitas cahaya rendah (malam hari) dan akan menurun menjadi 500 Ohm saat intensitas cahaya tinggi (siang hari).Umumnya sensor LDR digunakan pada rangkaian lampu otomatis pada rumah, taman, dan jalan raya.

Karakteristik sensor LDR

-Laju Recovery

Laju recovery merupakan suatu ukuran praktis dan suatu kenaikan nilai resistansi dalam waktu tertentu. Harga ini ditulis dalam K/detik, untuk LDR tipe arus harganya lebih besar dari 200K/detik(selama 20 menit pertama mulai dari level cahaya 100 lux), kecepatan tersebut akan lebih tinggi pada arah sebaliknya, yaitu pindah dari tempat gelap ke tempat terang yang memerlukan waktu kurang dari 10 ms untuk mencapai resistansi yang sesuai den-gan level cahaya 400 lux.

-Respon Spektral

Sensor Cahaya LDR (Light Dependent Resistor) tidak mempunyai sensitivitas yang sama untuk setiap panjang gelombang cahaya yang jatuh padanya (yaitu warna). Bahan yang biasa digunakan sebagai penghantar arus listrik yaitu tembaga, aluminium, baja, emas dan perak. Dari kelima bahan tersebut tembaga merupakan penghantar yang paling banyak, digunakan karena mempunyai daya hantaryang baik.

Kurva antara intensitas cahaya dan resistansi:


 

karakteristrik umum dari sensor cahaya LDR adalah sebagai berikut :

1.    Tegangan maksimum (DC): 150V

2.     Konsumsi arus maksimum: 100mW

3.    Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ

4.    Puncak spektral: 540nm (ukuran gelombang cahaya)

5.    Waktu Respon Sensor : 20ms – 30ms

6.    Suhu operasi: -30° Celsius – 70° Celcius


       - Sound Sensor


Sensor Suara adalah sensor yang memiliki cara kerja merubah besaran suara menjadi besaran listrik. Pada dasarnya prinsip kerja pada alat ini hampir mirip dengan cara kerja sensor sentuh pada perangkat seperti telepon genggam, laptop, dan notebook. Sensor ini bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang memiliki kumparan kecil dibalik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.
Spesifikasi :
  • Sensitivitas dapat diatur (pengaturan manual pada potensiometer)
  • Condeser yang digunakan memiliki sensitivitas yang tinggi
  • Tegangan kerja antara 3.3V – 5V
  • Terdapat 2 pin keluaran yaitu tegangan analog dan Digital output
  • Sudah terdapat lubang baut untuk instalasi
  • Sudah terdapat indikator led
Konfigurasi pin:

Grafik:

-   Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). 

GRAFIK RESPON TOUCH SENSOR


5. Percobaan  [back]

   a.) Prosedur  [back]


1. Siapkan komponen rangkaian yang diperlukan pada proteus.
2. Susunlah komponen-komponen tersebut sesuai petunjuk menjadi suatu rangkaian yang kompleks.
3. Input codingan arduino dan file library sensor
3. Setelah semua komponen terangkai, maka cobalah untuk menjalankannya.

 

< h3 style="margin: 0px; position: relative;">b.) Hardware dan diagram blok [back]

Hardware 

  1. Arduino Uno
  2. LCD
  3. Resistor
  4. Pir Sensor
  5. LDR sensor
  6. Sound Sensor
  7. Jumper

 

c.) Rangkaian Simulasi dan Prinsip Kerja  [back]






    Prinsip Kerja 

Prinsip kerja  gorden otomatis dapat dijelaskan sebagai berikut:


Sensor Cahaya (LDR):

Prinsip Kerja: Sensor cahaya (LDR) digunakan untuk mendeteksi kehadiran cahaya dari luar. Jika nilai cahaya yang terdeteksi mencapai ambang tertentu, itu menandakan adanya cahaya matahari atau pencahayaan yang memadai.

Aksi: Jika nilai LDR menunjukkan cahaya yang cukup, maka output di LCD akan menampil" LDR  berlogika 1". Ini menandakan bahwa gorden otomatis akan membuka jendela atau area tertentu untuk memanfaatkan cahaya matahari.

Sensor Suara (Sound Sensor):

Prinsip Kerja: Sensor suara digunakan untuk mendeteksi adanya suara tertentu, dalam hal ini, tepuk tangan. Jika nilai sensor suara mencapai ambang tertentu, itu menandakan adanya suara tepuk tangan.

Aksi: Jika nilai sensor suara mendeteksi suara tepuk tangan, output di LCD akan menampilkan "Sound sensor berlogika 1". Ini menandakan bahwa gorden otomatis akan menutup jendela atau area tertentu karena adanya suara tepuk tangan.

Sensor Sentuh (Touch Sensor):

Prinsip Kerja: Sensor sentuh digunakan untuk mendeteksi sentuhan pada permukaan tertentu. Jika sensor menyentuh mendeteksi sentuhan, itu menandakan adanya interaksi fisik pada sensor.

Aksi: Jika sensor sentuh mendeteksi sentuhan, output di LCD akan menampilkan "Sensor Touch berlogika 1". Ini menandakan bahwa gorden otomatis akan menutup jendela atau area tertentu karena adanya sentuhan pada sensor.


d.) Flowchart dan Listing Program  [back]


Flowcharct 





Listing Program

// Import library
#include <LiquidCrystal.h>

// Deklarasi pin
#define TOUCH_SENSOR_PIN A2
#define LDR_PIN A0
#define SOUND_SENSOR_PIN A1

// Deklarasi objek LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// Variabel
int touchSensorValue;
int ldrValue;
int soundSensorValue;

// Setup
void setup() {
  // Konfigurasi pin
  pinMode(TOUCH_SENSOR_PIN, INPUT);
  pinMode(LDR_PIN, INPUT);
  pinMode(SOUND_SENSOR_PIN, INPUT);

  // Konfigurasi LCD
  lcd.begin(20, 4);
}

// Loop
void loop() {
  // Baca nilai sensor
  touchSensorValue = digitalRead(TOUCH_SENSOR_PIN);
  ldrValue = analogRead(LDR_PIN);
  soundSensorValue = digitalRead(SOUND_SENSOR_PIN);

  // Tampilkan nilai sensor ke LCD
  lcd.setCursor(0, 0);
  lcd.print("Touch Sensor: ");
  lcd.print(touchSensorValue);

  lcd.setCursor(0, 1);
  lcd.print("LDR: ");
  lcd.print(ldrValue);

  lcd.setCursor(0, 2);
  lcd.print("Sound Sensor: ");
  lcd.print(soundSensorValue);

  // Tunda 100 milidetik
  delay(100);
}
f.) Video Demo   [back]
f.) Kondisi  [back]
Ketika inputan massuk menandakan sensor hidup, jika sensor berlogika 1 akan menghasilkan outputan tulisan pada lcd, sebagai tanda rangkaian berjalan dan perintah sensor dijalankan

g.) Vidio Simulasi  [back]






 h.) Download File  [back] 
  • Download HTML Klik Disini


  • Setelan halaman Opsi Halaman: Edit

    Tidak ada komentar:

    Posting Komentar